Test 1

Instruction:

- Answer 4 Question only. 1.
- 2. 1 hour 30 minute

Question 1

- a) Describe what is the 1^{st} and 2^{nd} faraday law clearly b) A ring shaped mild steel core having an average circumference of 40 cm, cross section of 2 cm²,
- is wound with a 1000-turns conductor with a 4 A current flowing through it. If the relative permeability of the core is 200, calculate:
 - i) The schematic diagram
 - ii) The magnetomotive force
 - iii) The magnetic field strength
 - iv) The flux density
 - v) The flux within the magnetic circuit
- vi) The reluctance

Ouestion 2

- a) Briefly what are the Ohm law and Kirchoff Law.
- b) A short shunt DC generator is supply with 30 Kw of power. The value of resistances is given for R_a , R_{se} , R_{sh} and R_L are 0.004 Ω , 0.02 Ω , 1.25 K Ω and 1 K Ω respectively. If the **total** loss of the carbon brush is 2 V. Determine:
 - i) Sketch clearly circuit and all states
 - ii) Load current.
 - iii) Input voltage.
 - iv) Serial current and voltage.
 - v) Voltage terminal and shunt current.
 - vi) Generated voltage.
 - vii) What is the possible value of flux if the generator running at 2500rpm, number of conductor 30 (Z), poles (P) is 4. (20 Mark)

Question 3

- a) Describe 3 factor influence E.M.F inside the generator and describe relationship between the factors with the E.M.F value. (5 Mark)
- b) A shunt DC motor supply with 250 V/25 kW, have the armature and shunt resistance 0.25 Ω and 250 Ω respectively. Determine.
 - i) Sketch clearly circuit and all states
 - ii) Armature currents. I_a
 - iii) E_{reaction}
 - iv) Power generated by armature
 - v) Power loss by Cooper. (P_{cu})

Question 4

- a) State the differences between DC generator and AC generator
- b) List down 4 type of starter and 4 main function of starter
- c) A diesel system generator generated AC voltage at output. These system have 4 pair core and system frequency is 50Hz. Calculate
 - i) Synchronous speed (Ns)
 - ii) Rotor speed (Nr) if slip (s) 3%
 - iii) Slip (s)
 - iv) Rotor frequency (fr)

Question 5

a) Sketch the schematic diagram of the transformers and describe clearly control principle of these circuit.

- b)A single phase transformers have 12000/240V, 20KVA has 5000 of turns at the input. If the flux loss is 1 KW and the power factor 0.9, calculate the efficiency of the transformers when:
 - i) Full load
 - ii) Half load

(17 Mark)

E2063

(20 Mark)

(5 Mark)

(5 Mark)

(20 Mark)

- (6 Mark)

(8 Mark)

- (8 Mark)

(11 Mark)